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Abstract - Cyber Threats are becoming more frequent and sophisticated, so we need better systems to detect 
malicious activities in network traffic. Detecting unbalanced network traffic is a critical challenge in cyber 
security, where malicious activities are often underrepresented in comparison to legitimate traffic. This study 
proposes a hybrid approach using XG- Boost, Random Forest, and an ensemble model to effectively identify 
anomalies in network traffic data. We also use dataset of IDS. Our approach improves the accuracy, 
efficiency, and reliability of intrusion detection, contributing to stronger defenses against cyber attacks and 
protecting important network systems 
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I. INTRODUCTION  

 In today's interconnected world, where digital communication is the backbone of many essential systems and 

services, maintaining network security has become a top priority. Cyber attacks are becoming more 

sophisticated, frequent, and challenging for organizations that need to protect sensitive data, ensure business 

continuity, and maintain public trust. Among various cyber threats, network intrusions pose a significant risk. 

These intrusions involve unauthorized access to systems, data manipulation, or network disruption, which can 

lead to severe financial and operational losses. 
 

A. Why Traditional Methods Fail 

 Traditional intrusion detection systems (IDS) often rely on rule-based methods, signature detection, or 

anomaly-based approaches[21]. Rule- based detection uses pre-defined patterns of known attacks, but these 

systems struggle to detect new or evolving threats. Anomaly detection can be more flexible, identifying 

deviations from normal network behavior. However, these methods are prone to false positives, where 

legitimate activities are incorrectly flagged as malicious. Moreover, sophisticated cyber attacks often blend in 

with regular traffic, making them harder to detect with conventional techniques. 
 

B. Challenges with Unbalanced Network Traffic 

 A critical issue in network traffic analysis is the imbalance between malicious and legitimate traffic. In most 

networks, the vast majority of data consists of normal user activities, while malicious attempts represent a tiny 

fraction. This creates a highly skewed dataset where conventional machine learning models often fail. They tend 

to be biased toward the majority class, neglecting minority class instances which are often the cyber attacks we 

need to detect. To illustrate, imagine a multi-lane highway with heavy traffic in some lanes and minimal activity 

in others. Attackers may exploit the less-monitored lanes to execute their malicious activities undetected. 

Similarly, within networks, cybercriminals may target underused systems or disguise attacks as legitimate 

activities to bypass detection system. 
 

C. The Role of Machine Learning in Intrusion Detection 

 Machine learning (ML) offers a robust solution by analyzing large amounts of network data, learning patterns, 

and detecting anomalies in real time. Unlike static, rule-based systems, ML models can continuously adapt to 
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new and emerging threats. By using algorithms like XG-Boost and Random Forest, we can enhance the accuracy 

and reliability of intrusion detection. 

 XG-Boost (Extreme Gradient Boosting): XG-Boost is an efficient and powerful ML algorithm widely 

used for structured data analysis. It uses a boosting approach, where multiple decision trees are 

combined to reduce errors and improve predictive accuracy. Its ability to handle missing data, prevent 

over fitting, and optimize computational performance makes it ideal for network traffic classification. 

 Random Forest: Random Forest is a versatile and robust ensemble learning algorithm that uses 

multiple decision trees to improve classification performance. By averaging the predictions from 

multiple trees, it reduces over fitting and enhances model generalization. Random Forest is particularly 

effective when dealing with large datasets and complex patterns in network traffic. 

 Ensemble Model: To further improve performance, we can combine the strengths of both XG-Boost and 

Random Forest using a stacking ensemble model. In this approach, the predictions from both models are 

used as input features for a secondary model, often a logistic regression classifier, which makes the final 

prediction. This combination often results in higher accuracy, improved generalization, and better 

detection of malicious activities. 
  

II. RELATED WORKS 

 A number of papers deals with top points related to various aspects of cloud computing, cyber security and 

ethical hacking[1].They investigate frameworks for selecting optimal cloud services, predicting service rankings, 

and addressing challenges in cloud-based software development [2]. Additionally, performance analysis of 

encryption algorithms in cloud computing is examined [3]. These studies contribute to understanding cloud 

computing’s ef5iciency and security. Furthermore, they highlight the growing importance of cyber security, as 

indicated by market forecasts predicting signi5icant growth in the cyber security industry [4]. Overall, the 

research provides valuable insights into improving cloud service selection, predicting service rankings, 

addressing development challenges, and enhancing cyber security measures in the digital era [5]. This study 

presents a novel dimensionality reduction strategy for detecting Distributed Denial of Service (DDoS) attacks in 

cloud computing environments [6].  
 

 Focusing on the autonomous detection of malicious events using machine learning models in drone networks 

[7], it also introduces a machine-learning-enabled intrusion detection system for cellular- connected UAV 

networks [8]. Additionally, this study presents a lightweight IDS for UAV networks utilizing a periodic deep 

reinforcement learning- based approach [9]. Furthermore, arti5icial intelligence is leveraged for intrusion 

detection systems in unmanned aerial vehicles [10], while a high-performance intrusion detection system for 

networked UAVs is developed using deep learning techniques [11].  Additionally, a data normalization technique 

is proposed for detecting cyber- attacks on UAVs [12].Another method involves creating a system with multiple 

layers of security using a mix of technologies called a hybrid Deep Belief Network [13].Researchers also explored 

using advanced algorithms like Particle Swarm Optimization along with Deep Belief Networks to improve the 

accuracy of intrusion detection systems [14]. Additionally, the study discusses using bio-inspired models and 

hybrid deep learning techniques to make network security more robust [15]. Ethical hacking has emerged as a 

crucial practice, enabling organizations to fortify their defenses and safeguard their assets[17].Detect UPI Fraud 

By Using Machine learning[41]. 
 

III. METHODOLOGY 

A. Data Collection 

 The CIC-IDS2017 (Canadian Institute for Cyber security - Intrusion Detection System 2017) dataset is a 

comprehensive and realistic network traffic dataset designed for cyber security research[20]. It was created to 

simulate real-world network traffic, including both normal activities and various types of cyber attacks. 

Researchers and cyber security experts use this dataset to evaluate intrusion detection systems (IDS) and 

machine learning models. Purpose of CIC-IDS 2017: 

 Designed to address the challenges in detecting modern cyber attacks.  

 Provides labeled network traffic data for supervised learning.  

 Enables the development and evaluation of machine learning-based intrusion detection systems.  
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 Contains diverse attack scenarios to test model robustness. 

Attacks In CIC-IDS2017: The dataset covers 15 distinct types of attacks. 

1. Brute Force Attacks 

 SSH-Brute Force 

 FTP-Brute Force 

2. Denial of Service (DoS) 

 DoS-Slowloris 

 DoS-GoldenEye 

 DoS-Hulk 

 DoS-SlowHTTPTest 

3. Distributed Denial of Service(DDoS) 

 DDoS Attack 

4. Web-Based Attacks 

 Web Shell, SQL Injection 

 XSS(Cross-Site Scripting) 

5. Infiltration 

6. Port Scanning 

7. Botnet Activity 

8. Data Exfiltration 
 

B. Data Preprocessing 

 Effective data preprocessing is a crucial step in ensuring the accuracy and efficiency of machine learning 

models[18]. The following preprocessing techniques were applied to the CIC-IDS2017 dataset to clean and 

prepare the data for model training: 
 

a. Data Cleaning 

 Data cleaning was performed to handle missing, inconsistent, and infinite values. Missing data can lead to 

biased models and inaccurate predictions. Rows containing missing values were removed, and infinite values 

(resulting from computational errors) were replaced with Nan and subsequently dropped. This step ensures a 

clean and reliable dataset for model training. 
 

b. Label Encoding 

 The dataset contains categorical features such as protocol types and attack labels. These categorical variables 

were converted to numerical representations using Label Encoding. Each unique category was assigned a unique 

integer value. Label Encoding helps machine learning models interpret categorical data more efficiently by 

converting it into a numerical format. 
 

c. Feature Scaling 

 To ensure uniformity and optimize model performance, Standard Scaling was applied to normalize the feature 

values. Standard Scaling transforms the data such that it has a mean of zero and a standard deviation of one. This 

is particularly beneficial for models like XG-Boost and Random Forest, where variations in feature scales may 

otherwise impact performance. 
 

d. Feature Selection using Variance Thresholding 

 Variance Thresholding was employed to remove low-variance features that provide little to no useful 

information. Features with near-constant values were eliminated as they contribute minimal predictive power. 

By applying a threshold of 0.01, only the most relevant features with sufficient variance were retained for model 

training.  
 

 The Datasets is then split into training and testing sets using an 80-20 split. These preprocessing steps 

collectively enhance model accuracy, reduce computational complexity, and improve the generalizability of the 

models. The cleaned and processed dataset was then used for training and testing , evaluating machine learning 

models, including XG-Boost, Random Forest, and an ensemble of both. 
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C. Handling Unbalanced Data  

 In imbalanced datasets like CIC-IDS2017, where malicious network traffic is significantly underrepresented 

compared to legitimate traffic, traditional machine learning models often struggle to correctly identify minority 

class instances. This leads to biased predictions, poor recall for minority classes, and a lower overall detection 

accuracy. SMOTE is an effective solution to address this issue by generating synthetic samples for the minority 

classes rather than duplicating them. It creates new data points by interpolating between existing minority class 

instances, making the dataset more balanced. This synthetic generation helps the model learn more effectively 

from the minority class patterns, improving its generalization and reducing the risk of over fitting. 
 

a. Why SMOTE? 
 Improves Model Performance: Enhances the classifier’s ability to detect minority class instances, 

leading to better recall and F1-score. 

 Reduces Class Imbalance: Generates realistic synthetic data that balances the dataset without 

introducing redundancy. 

 Minimizes Overfitting: Unlike random oversampling, SMOTE prevents the model from memorizing 

repeated data points by creating diverse synthetic samples. 

 Efficient for Large Datasets: SMOTE is computationally efficient and scalable for large datasets like  

CIC- IDS2017. 

 Sampling Strategy and Parameter Tuning:The effectiveness of SMOTE depends on the choice of 

parameters and the sampling strategy.  
 

In this study, the following strategies were used: 

1. Sampling Strategy 

 Sampling_strategy='auto': SMOTE was applied to balance the classes by increasing the number of 

minority samples to match the majority class. 

 For datasets with multiple classes, a customized strategy could be applied to balance only the severely 

underrepresented classes. 

2. K-Nearest Neighbors (K_neighbors) 

 K_neighbors=5: SMOTE uses a k-nearest neighbors approach to generate synthetic samples by selecting 

five nearest neighbors of a given minority class instance.  

 This parameter was tuned by evaluating model performance across different k values. Lower k values 

reduce the risk of introducing noise, while higher values ensure smoother interpolation.  

3. Random State 

 Random_state=42: A fixed random state ensured reproducibility of the results across multiple runs. 

4. Edge Cases Management 

 In cases where the number of minority samples was extremely low (less than 5 samples), the                                      

k_neighborsparameter was dynamically adjusted using:  

   k_neighbors = min(5, minority_class_count - 1) if minority_class_count > 1 else 
 

D. Model Implementation 

a. XG-Boost Classifier 

XG-Boost (Extreme Gradient Boosting) is a highly efficient and scalable machine learning algorithm based on the 

gradient boosting framework[19]. It is designed to improve prediction accuracy by combining the outputs of 

multiple weak learners,typically decision trees. XG-Boost is particularly effective for handling structured tabular 

data and is widely used in classification tasks, including those involving imbalanced data. 

 Gradient Boosting: XG-Boost minimizes the loss function using a gradient descent approach, 

sequentially building decision trees to correct the errors of the previous models. 

 Handling Imbalanced Data: By incorporating objective functions like logistic loss and using weighted 

loss functions, XG-Boost can assign higher importance to minority classes, improving recall and 

precision for rare events. 

 Regularization: XG-Boost uses L1 and L2 regularization to reduce over fitting, making it robust for 

noisy network traffic data. 
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 Feature Importance: XG-Boost provides insights into feature importance, allowing for a better 

understanding of influential network attributes in anomaly detection 

Equation  

Accuracy=TP+TN/TP+TN+FP+FN                                                                                (1) 

Where: 

 TP = True Positives (Correctly predicted positive instances) 

 TN = True Negatives (Correctly predicted negative instances) 

 FP = False Positives (Incorrectly predicted positive instances) 

 FN = False Negatives (Incorrectly predicted negative instances)  

Precision: Precision=TP/TP+ FP                                                                                                 (2) 

Recall=TP/TP+ FN                                                  (3) 

F1Score:F1Score=2(Precision∗ Recall)/Precision+ Recall                                                  (4)  
 

Recall (also known as Sensitivity or True Positive Rate)  

 

Figure 1. Flow of Work Chart 
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b. Random Forest Classifier 

 Random Forest is a powerful ensemble learning algorithm that constructs multiple decision trees using 

randomly selected subsets of the training data. Its predictions are made by averaging the outputs of individual 

trees for regression tasks or by majority voting for classification tasks. 

 Robust Predictions: Random Forest is resilient to noise and over fitting due to its bagging technique,  

making it ideal for large and complex datasets. 

 Feature Importance Analysis: t provides feature importance scores using techniques like Gini 

Importance or Mean Decrease in Impurity, enabling effective feature selection. 

 Handling Imbalanced Data: By adjusting class weights and using bootstrap sampling, Random Forest 

can manage class  imbalance effectively. It also offers stable performance in scenarios where class 

distributions are uneven. 
 

Equation 
                        Accuracy=TP+TN/TP+TN+FP+FN        (5) 

Where: 

 TP = True Positives(Correctly predicted positive instances) 

 TN = True Negatives(Correctly predicted negative instances) 

 FP = False Positives(Incorrectly predicted positive instances) 

 FN = False Negatives(Incorrectly predicted negative instances)  

        Precision: Precision=TP/TP+ FP        (6) 

        Recall= TP / TP+ FN         (7) 

        F1Score: F1Score=2(Precision∗ Recall)/Precision+ Recall     (8) 

        Balanced Accuracy: Balanced Accuracy = Sensitivity + Specificity/2   (9) 

Recall (also known as Sensitivity or True Positive Rate) 

Figure 2. Virtual Implementation of Random Forest  
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c. Ensemble Model with Stacked Generalization 

 Instead of using Logistic Regression as a meta-classifier, stacked generalization is employed to combine the 

strengths of the XG-Boost and Random Forest classifiers. In this approach, the predictions from the base 

classifiers are treated as inputs to a secondary model, often called the meta-learner. The meta-learner is trained 

to learn the best way to combine these predictions to make the final decision. 

Figure 3. Creation of Ensemble Model  

 

 Improved Accuracy: Stacked generalization reduces the risk of over fitting by leveraging the strengths 

of diverse models.  

 Robustness: By capturing complementary information from the base models, it enhances prediction 

accuracy, especially for complex network traffic data.  

 Adaptive Learning: The meta-learner adapts to the misclassifications of the base models, improving 

overall model reliability.  

 Implementation Flexibility: Various machine learning algorithms, including gradient boosting models, 

support vector machines, or deep neural networks, can be used as meta- learners depending on the 

dataset and use case. 
 

Equation 
    Accuracy = TP+TN/TP+TN+FP+FN           (10) 

Where: 

 TP = True Positives(Correctly predicted positive instances) 

 TN = True Negatives(Correctly predicted negative instances) 

 FP = False Positives(Incorrectly predicted positive instances) 

 FN = False Negatives(Incorrectly predicted negative instances)  

   Precision: Precision = TP/TP+ FP           (11) 

   Recall = TP /TP+ FN                              (12) 

F1Score: F1Score = 2(Precision∗ Recall)/Precision+ Recall                                        (13) 

Balanced Accuracy: Balanced Accuracy = Sensitivity + Specificity/2                       (14) 

Recall(also known as Sensitivity or True Positive Rate) 
 

IV. EXISTINGIMPLEMENTATIONMETHODS 

A. XG-BOOST 

Implementation Code 
 

#XG-Boost Algorithm 

import pandas as pd import numpy as np 

from sklearn.model_selection import train_test_split from xgboost import XGBClassiCier 

from sklearn.metrics import accuracy_score, classiCication_report, confusion_matrix from sklearn.preprocessing 

import LabelEncoder, StandardScaler 

from sklearn.feature_selection import VarianceThreshold from imblearn.over_sampling import SMOTE 
 

# Load the dataset try: 

df = pd.read_csv('netwok_trafCic.csv') except FileNotFoundError: 

raise FileNotFoundError("File 'network_trafCic.csv' not found. Please check the path.") 
 

Data Set 

 
 Data 

Preprocessing 

 Feature Selection 

 

 Model Training 

 Model Testing 

Ensemble Model 

 Classification 

Model 
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# Data Cleaning: Handle missing values df.columns = df.columns.str.strip() df.dropna(inplace=True) 
 

# Encode categorical variables using LabelEncoder label_encoder = LabelEncoder() 

for col in df.select_dtypes(include='object').columns: 

df[col] = label_encoder.Cit_transform(df[col]) 
 

# Identify the target variable target_column = 'Label' 

if target_column not in df.columns: 

raise KeyError("Label column not found. Available columns: " + str(df.columns)) 
 

# Separate features and target 

X = df.drop(columns=[target_column]) y = df[target_column]  
 

# Handle inCinite values 

X.replace([np.inf, -np.inf], np.nan, inplace=True) X.Cillna(X.max().max(), inplace=True) 
 

# Remove low variance features 

selector = VarianceThreshold(threshold=0.01) X = pd.DataFrame(selector.Cit_transform(X)) 
 

# Normalize features using StandardScaler scaler = StandardScaler() 

X = pd.DataFrame(scaler.Cit_transform(X)) 
 

# Handle imbalanced data using SMOTE smote = SMOTE(random_state=42) 

X_resampled, y_resampled = smote.Cit_resample(X, y) 
 

# Split into train and test sets 

X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=0.2, random_state=42) 
 

# Initialize and train XGBoost ClassiCier 

xgb = XGBClassiCier(n_estimators=200, learning_rate=0.05, max_depth=7, random_state=42) xgb.Cit(X_train, 

y_train) 
 

# Make predictions 

y_pred = xgb.predict(X_test) 
 

# Evaluate the model 

print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}") 

print("\nClassiCication Report:\n", classiCication_report(y_test, y_pred, zero_division=1)) print("\nConfusion 

Matrix:\n", confusion_matrix(y_test, y_pred)) 
 

Output 

Figure 4. XGBoost Model Performance on Balanced Data (SMOTE Applied) 
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B. Random Forest 

Implementation Code 
 

#Random Forest Algorithm 

import pandas as pd import numpy as np 

from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassiCier 

from sklearn.metrics import classiCication_report, confusion_matrix, accuracy_score from 

imblearn.over_sampling import SMOTE 

from collections import Counter 

from sklearn.preprocessing import LabelEncoder, StandardScaler 
 

# Load dataset 

df = pd.read_csv("netwok_trafCic.csv") # Ensure the CSV Cile is in the same directory 
 

# Trim spaces from column names to avoid key errors df.columns = df.columns.str.strip() 
 

# Drop missing values df.dropna(inplace=True) 
 

# Identify the target column 

target_column = "Label" if "Label" in df.columns else " Label" 

# Convert categorical columns to numeric using Label Encoding label_encoders = {} for col in 

df.select_dtypes(include=['object']).columns: if col 

!= target_column: 

le = LabelEncoder() 

df[col] = le.Cit_transform(df[col]) label_encoders[col] 

= le 
 

# Split features and target variable 

X = df.drop(columns=[target_column]) y 

= df[target_column] 
 

# Encode the target variable 

y = LabelEncoder().Cit_transform(y) 
 

# Print class distribution before balancing print("Class Distribution Before SMOTE:", Counter(y)) 
 

# Split dataset into training and testing sets (80-20 split) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y) 

 

# Convert to NumPy array for faster processing X_train = X_train.to_numpy() 

X_test = X_test.to_numpy() 
 

# Handle inCinite values & NaN 

X_train = np.where(np.isinf(X_train), np.nan, X_train) X_test = np.where(np.isinf(X_test), np.nan, X_test) 
 

# Replace NaN with max Cinite value 

Cinite_max = np.nanmax(X_train[np.isCinite(X_train)]) # Get max Cinite value 
 

X_train = np.nan_to_num(X_train, nan=Cinite_max) X_test = np.nan_to_num(X_test, nan=Cinite_max) 
 

# Normalize features scaler 

= StandardScaler() 

X_train = scaler.Cit_transform(X_train) X_test = scaler.transform(X_test) 
 

# Apply SMOTE to only small classes (avoiding memory overload) min_class_size = 100000 

class_counts = Counter(y_train) 
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smote_dict = {cls: min_class_size for cls, count in class_counts.items() if count < min_class_size} smote = 

SMOTE(sampling_strategy=smote_dict, random_state=42) 

X_train_resampled, y_train_resampled = smote.Cit_resample(X_train, y_train) print("Class Distribution After 

SMOTE:", Counter(y_train_resampled)) 
 

# Train Random Forest ClassiCier 

rf_model = RandomForestClassiCier(n_estimators=100, random_state=42, class_weight="balanced", n_jobs=-1) 

rf_model.Cit(X_train_resampled, y_train_resampled) 
 

# Predict on test data 

y_pred = rf_model.predict(X_test) 
 

# Evaluate model performance 

print("Accuracy Score:", accuracy_score(y_test, y_pred)) print("\nConfusion Matrix:\n", confusion_matrix(y_test, 

y_pred)) print("\nClassiCication Report:\n", classiCication_report(y_test, y_pred)) 

 

Output 

Figure 5. Random Forest Model Performance on Large-Scale Data (SMOTE Applied) 

 

V. IMPLEMENTATION  OF  HYBRID TECHNIQUE 
 Combining XG-Boost and Random Forest is a powerful strategy for leveraging the strengths of both models. 

This hybrid approach can lead to improved performance, as it combines the robustness of Random Forest's 

bagging with the accuracy-enhancing properties of XG-Boost boosting. 
 

A. Combination of XG-Boost and Random Forest 

There are several ways to combine XG-Boost and RandomForest to enhance their performance: 
 

a. Stacking (Model Stacking) 

 Stacking is an ensemble technique where multiple models are trained, and a meta-model is used to combine 

their predictions. The idea is to stack XG-Boost and RandomForest as base models and use another model (often 

a simpler model like logistic regression or another tree-based method) to combine the predictions of the base 

models. 
 

i). Process 

 Train RandomForest and XG-Boost independently on the training data. 

 Make predictions from each base model. 

 Feed the predictions of both models as input into a meta-model, which could be a simple linear 

regression or logistic regression. 
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ii). Advantages 

 Combines the strengths of both models: the randomness and generalization of Random Forest and the 

fine-tuned accuracy of XG-Boost. 

 Can significantly improve model performance if both models have complementary strengths. 
 

iii). Example 

 Use Random Forest to capture general patterns. 

 Use XG-Boost to focus on correcting the errors made by Random Forest. 

 A meta-model (e.g., logistic regression) can combine these predictions for a more accurate result. 
 

B. Bagging + Boosting 

 In this approach, you can combine the bagging mechanism of Random Forest with the boosting mechanism of 

XG-Boost in a hybrid model. 
 

i). Process 

 Train Random Forest (bagging) on the training data. 

 Use the predictions of Random Forest as features for XG-Boost (boosting). 

 Alternatively, you can first run XG-Boost and then apply RandomForest for further refinement and 

correction of the errors. 
 

ii). Advantages 

 Bagging (Random Forest) helps reduce variance, preventing overfitting. 

 Boosting (XG-Boost) refines the model by correcting the residuals of the previous iteration. 

 This combination can handle both high variance and high bias in a more balanced manner. 
 

C. Benefits of Combining XG-Boost and Random Forest 

 Better Generalization: By combining the power of bagging (Random Forest) and boosting (XG-Boost), 

you improve the generalization capability of the model, reducing both variance and bias. 

 Increased Accuracy: The hybrid approach leverages the strengths of each model to increase overall 

prediction accuracy. 

 Reduced Overfitting: Random Forest helps to reduce overfitting by averaging out multiple trees, while 

XG-Boost improves the model by focusing on difficult cases. 

 Improved Handling of Imbalanced Data: Both models can be tuned to handle imbalanced datasets, 

but combining them can improve performance in classification tasks with class imbalance. 

 Increased Robustness: The ensemble of these two models can be more robust to noise and outliers in 

the data. 
 

D. Datasets 

 We  Use CIC –IDS2017 dataset for detecting unbalanced network . We Train and Test Datasets into 80 -20 .We 

Clean The data So That Removes the blank and invalid data. That Improves the accuracy. 
 

Output 

Figure 6. Accuracy of Ensemble Model And Classification 
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Figure 7. Class Distribution Before And After Smote 

Figure 8. Confusion Matrix Of  Ensemble Model 
 

Table 1. Comparison of Individual Methods and Hybrid Method(XG-Boost + Random Forest) 

Parameter XG-Boost Random Forest 
Enhancement of Both 

(Hybrid) 

Model Complexity 

High: XG-Boost builds 

sequential trees, focusing 

on errors and fine-tuning 

them, leading to higher 

model complexity 

Moderate: Random 

Forest builds multiple 

independent trees, which 

are simple but can grow 

complex with many trees 

 

Very High: Combines the 

complexity of both 

models (Random Forest's 

bagging and XG-Boost's 

boosting), making it 

complex and harder to 

interpret 

Interpretability 
 

Low: Difficult to interpret 

due to the sequential 

nature of boosting, and 

interactions between 

High: Each tree in the 

forest is easy to interpret, 

and overall predictions 

can be understood by 

Very Low: Combining 

both models results in a 

highly complex structure, 

making it very hard to 
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trees are harder to trace looking at individual trees interpret 

Handling Nonlinear 
Data 

 

Excellent: XG-Boost 

excels at capturing 

complex nonlinear 

relationships due to its 

boosting process and 

ability to model 

interactions between 

features 

Moderate: Random 

Forest is better at 

capturing nonlinear 

relationships compared to 

a single decision tree but 

is less effective than XG-

Boost 

Excellent: The 

combination of bagging 

(Random Forest) and 

boosting (XG-Boost) 

provides very strong 

performance in handling 

nonlinear relationships 

and interactions 

Scalability 

Excellent: Highly 

optimized for scalability, 

particularly with large 

datasets, due to its 

parallel processing 

capabilities and efficient 

handling of large amounts 

of data 

Good: Scales well for 

moderately large 

datasets, but can become 

slower with too many 

trees 

Excellent: Highly 

optimized for scalability, 

particularly with large 

datasets, due to its 

parallel processing 

capabilities and efficient 

handling of large amounts 

of data 

Overfitting Resistance 

Moderate: XG-Boost is 

more prone to overfitting, 

especially without proper 

regularization, but it has 

built-in regularization 

(L1/L2) to help 

Good: Random Forest is 

less prone to overfitting 

than a single decision tree 

because it averages 

predictions across many 

trees, reducing variance 

Very Good: Combines the 

low-variance (Random 

Forest) and high-bias (XG-

Boost) aspects, reducing 

the likelihood of 

overfitting and improving 

generalization 

Training Speed 

Moderate to Slow: 

Training speed can be 

slower due to the 

sequential nature of 

boosting, although 

optimizations like early 

stopping and 

parallelization can speed 

up training 

Moderate: Training 

speed is generally slower 

as the number of trees 

increases, but 

parallelization helps 

Slow: Training speed is 

generally slower due to 

the combination of both 

models (one for 

generalization and the 

other for error 

correction) 

Performance on 
Imbalanced Data 

Excellent: XG-Boost 

performs well with 

imbalanced datasets as it 

focuses on harder-to- 

classify examples, and 

class weights can be 

adjusted easily 

Good: Random Forest can 

handle imbalanced data 

reasonably well by 

averaging predictions, but 

may require class weight 

adjustment or resampling 

techniques 

Excellent: The hybrid 

approach handles 

imbalanced data well by 

leveraging both the 

robustness of Random 

Forest and the error-

correction power of XG-

Boost 

Feature Interaction 

Excellent: XG-Boost is 

specifically designed to 

capture complex feature 

interactions and 

nonlinear relationships 

Moderate: Random 

Forest captures feature 

interactions through 

decision splits but is less 

explicit than XG-Boost 

Excellent: The hybrid 

approach benefits from 

both models' ability to 

capture feature 

interactions-Random 

Forest handles the 

general trends, while XG-

Boost refines the model 

through boosting 

Dimensionality Excellent: XG-Boost Good: Can handle high- Excellent: The hybrid 
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Handling handles high-dimensional 

data well by regularizing 

the model and selecting 

the most relevant features 

through boosting 

dimensional data, but 

may require feature 

selection techniques to 

avoid overfitting or 

inefficiency 

model benefits from both 

approaches: Random 

Forest helps manage 

feature selection, while 

XGBoost focuses on the 

most relevant features 

Robustness to Noise 

Moderate: XGBoost can 

be sensitive to noise 

unless properly 

regularized, as it may 

overfit to noisy instances 

Good: Random Forest is 

relatively robust to noisy 

data, as averaging 

predictions reduces the 

effect of noise 

Excellent: The 

combination of both 

models provides a strong 

defense against noise, as 

Random Forest 

generalizes well and 

XGBoost refines the 

model 

Practical Use 

Excellent: Often the go-to 

choice for Kaggle 

competitions and more 

complex, high-accuracy 

tasks due to its flexibility 

and power. 

Good: Works well for a 

variety of general-

purpose tasks, 

particularly with 

structured/tabular data. 

Excellent: Best used in 

high-stakes applications 

where both the 

generalization and fine-

tuning abilities of the 

models are needed, 

especially in complex 

real-world problems. 
 

VI. CONCLUSION 

 In this research, we proposed a robust ensemble model combining XG-Boost and Random Forest classifiers to 

detect unbalanced network traffic. By addressing the challenges of class imbalance using SMOTE, we generated 

synthetic samples to balance the dataset, resulting in more effective classification. The use of feature selection 

through Variance Thresholding and data normalization via Standard Scaling further enhanced model 

performance. The ensemble model demonstrated its strength by leveraging the advantages of both XG-Boost’s 

gradient boosting approach and Random Forest’s robustness to noise. Through stacked generalization, we 

achieved improved predictive accuracy compared to using individual classifiers. The visual analysis of the ROC 

curve and confusion matrix provided further insights into the model’s performance, particularly in detecting 

minority classes. While the model showed significant improvements, minor challenges such as false positives in 

certain categories suggest areas for further enhancement. Future work may explore the inclusion of additional 

classifiers, Cine-tuning hyper parameters, or integrating real-time anomaly detection mechanisms. Overall, the 

proposed ensemble learning framework proves to be an effective and scalable solution for unbalanced network 

traffic detection, contributing to the ongoing efforts in enhancing cyber-security and mitigating network threats. 
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