
Golden Sun-Rise
International Journal of Multidisciplinary on Science and Management

ISSN: 3048-5037/ Volume 2 Issue 2 Apr-Jun 2025 / Page No: 01-16
Paper Id: IJMSM- V2I2P101/ Doi:10.71141/30485037/V2I2P101

Research Article

Detecting Unbalanced Network Traffic : A Machine

Learning Using Stacked Generalization
Vitthal B. Kamble1, Kunal R. Jadhav2, Tanesh M. Patil3, Ayush D. More4

1Computer Engineering, Cusrow Wadia Institute of Technology Pune, Maharastra, India.

Received: 20 March 2025 Revised: 25 March 2025 Accepted: 28 March 2025 Published: 05 April 2025

Abstract - Cyber Threats are becoming more frequent and sophisticated, so we need better systems to detect
malicious activities in network traffic. Detecting unbalanced network traffic is a critical challenge in cyber
security, where malicious activities are often underrepresented in comparison to legitimate traffic. This study
proposes a hybrid approach using XG- Boost, Random Forest, and an ensemble model to effectively identify
anomalies in network traffic data. We also use dataset of IDS. Our approach improves the accuracy,
efficiency, and reliability of intrusion detection, contributing to stronger defenses against cyber attacks and
protecting important network systems

Keywords - Cyber security, Intrusion Detection System (IDS), XG-Boost, Random Forest, Ensemble Model,
Anomaly Detection, Class Imbalance, Network Security, Machine Learning, Hybrid Model, Threat Detection,
Data Preprocessing, Malicious Traffic Detection.

I. INTRODUCTION

 In today's interconnected world, where digital communication is the backbone of many essential systems and

services, maintaining network security has become a top priority. Cyber attacks are becoming more

sophisticated, frequent, and challenging for organizations that need to protect sensitive data, ensure business

continuity, and maintain public trust. Among various cyber threats, network intrusions pose a significant risk.

These intrusions involve unauthorized access to systems, data manipulation, or network disruption, which can

lead to severe financial and operational losses.

A. Why Traditional Methods Fail

 Traditional intrusion detection systems (IDS) often rely on rule-based methods, signature detection, or

anomaly-based approaches[21]. Rule- based detection uses pre-defined patterns of known attacks, but these

systems struggle to detect new or evolving threats. Anomaly detection can be more flexible, identifying

deviations from normal network behavior. However, these methods are prone to false positives, where

legitimate activities are incorrectly flagged as malicious. Moreover, sophisticated cyber attacks often blend in

with regular traffic, making them harder to detect with conventional techniques.

B. Challenges with Unbalanced Network Traffic

 A critical issue in network traffic analysis is the imbalance between malicious and legitimate traffic. In most

networks, the vast majority of data consists of normal user activities, while malicious attempts represent a tiny

fraction. This creates a highly skewed dataset where conventional machine learning models often fail. They tend

to be biased toward the majority class, neglecting minority class instances which are often the cyber attacks we

need to detect. To illustrate, imagine a multi-lane highway with heavy traffic in some lanes and minimal activity

in others. Attackers may exploit the less-monitored lanes to execute their malicious activities undetected.

Similarly, within networks, cybercriminals may target underused systems or disguise attacks as legitimate

activities to bypass detection system.

C. The Role of Machine Learning in Intrusion Detection

 Machine learning (ML) offers a robust solution by analyzing large amounts of network data, learning patterns,

and detecting anomalies in real time. Unlike static, rule-based systems, ML models can continuously adapt to

http://ijmsm.prtechnologysolutions.in/

2
Vitthal B. Kamble et al. 1(2), 1-16, 2025

new and emerging threats. By using algorithms like XG-Boost and Random Forest, we can enhance the accuracy

and reliability of intrusion detection.

 XG-Boost (Extreme Gradient Boosting): XG-Boost is an efficient and powerful ML algorithm widely

used for structured data analysis. It uses a boosting approach, where multiple decision trees are

combined to reduce errors and improve predictive accuracy. Its ability to handle missing data, prevent

over fitting, and optimize computational performance makes it ideal for network traffic classification.

 Random Forest: Random Forest is a versatile and robust ensemble learning algorithm that uses

multiple decision trees to improve classification performance. By averaging the predictions from

multiple trees, it reduces over fitting and enhances model generalization. Random Forest is particularly

effective when dealing with large datasets and complex patterns in network traffic.

 Ensemble Model: To further improve performance, we can combine the strengths of both XG-Boost and

Random Forest using a stacking ensemble model. In this approach, the predictions from both models are

used as input features for a secondary model, often a logistic regression classifier, which makes the final

prediction. This combination often results in higher accuracy, improved generalization, and better

detection of malicious activities.

II. RELATED WORKS

 A number of papers deals with top points related to various aspects of cloud computing, cyber security and

ethical hacking[1].They investigate frameworks for selecting optimal cloud services, predicting service rankings,

and addressing challenges in cloud-based software development [2]. Additionally, performance analysis of

encryption algorithms in cloud computing is examined [3]. These studies contribute to understanding cloud

computing’s ef5iciency and security. Furthermore, they highlight the growing importance of cyber security, as

indicated by market forecasts predicting signi5icant growth in the cyber security industry [4]. Overall, the

research provides valuable insights into improving cloud service selection, predicting service rankings,

addressing development challenges, and enhancing cyber security measures in the digital era [5]. This study

presents a novel dimensionality reduction strategy for detecting Distributed Denial of Service (DDoS) attacks in

cloud computing environments [6].

 Focusing on the autonomous detection of malicious events using machine learning models in drone networks

[7], it also introduces a machine-learning-enabled intrusion detection system for cellular- connected UAV

networks [8]. Additionally, this study presents a lightweight IDS for UAV networks utilizing a periodic deep

reinforcement learning- based approach [9]. Furthermore, arti5icial intelligence is leveraged for intrusion

detection systems in unmanned aerial vehicles [10], while a high-performance intrusion detection system for

networked UAVs is developed using deep learning techniques [11]. Additionally, a data normalization technique

is proposed for detecting cyber- attacks on UAVs [12].Another method involves creating a system with multiple

layers of security using a mix of technologies called a hybrid Deep Belief Network [13].Researchers also explored

using advanced algorithms like Particle Swarm Optimization along with Deep Belief Networks to improve the

accuracy of intrusion detection systems [14]. Additionally, the study discusses using bio-inspired models and

hybrid deep learning techniques to make network security more robust [15]. Ethical hacking has emerged as a

crucial practice, enabling organizations to fortify their defenses and safeguard their assets[17].Detect UPI Fraud

By Using Machine learning[41].

III. METHODOLOGY

A. Data Collection

 The CIC-IDS2017 (Canadian Institute for Cyber security - Intrusion Detection System 2017) dataset is a

comprehensive and realistic network traffic dataset designed for cyber security research[20]. It was created to

simulate real-world network traffic, including both normal activities and various types of cyber attacks.

Researchers and cyber security experts use this dataset to evaluate intrusion detection systems (IDS) and

machine learning models. Purpose of CIC-IDS 2017:

 Designed to address the challenges in detecting modern cyber attacks.

 Provides labeled network traffic data for supervised learning.

 Enables the development and evaluation of machine learning-based intrusion detection systems.

3
Vitthal B. Kamble et al. 1(2), 1-16, 2025

 Contains diverse attack scenarios to test model robustness.

Attacks In CIC-IDS2017: The dataset covers 15 distinct types of attacks.

1. Brute Force Attacks

 SSH-Brute Force

 FTP-Brute Force

2. Denial of Service (DoS)

 DoS-Slowloris

 DoS-GoldenEye

 DoS-Hulk

 DoS-SlowHTTPTest

3. Distributed Denial of Service(DDoS)

 DDoS Attack

4. Web-Based Attacks

 Web Shell, SQL Injection

 XSS(Cross-Site Scripting)

5. Infiltration

6. Port Scanning

7. Botnet Activity

8. Data Exfiltration

B. Data Preprocessing

 Effective data preprocessing is a crucial step in ensuring the accuracy and efficiency of machine learning

models[18]. The following preprocessing techniques were applied to the CIC-IDS2017 dataset to clean and

prepare the data for model training:

a. Data Cleaning

 Data cleaning was performed to handle missing, inconsistent, and infinite values. Missing data can lead to

biased models and inaccurate predictions. Rows containing missing values were removed, and infinite values

(resulting from computational errors) were replaced with Nan and subsequently dropped. This step ensures a

clean and reliable dataset for model training.

b. Label Encoding

 The dataset contains categorical features such as protocol types and attack labels. These categorical variables

were converted to numerical representations using Label Encoding. Each unique category was assigned a unique

integer value. Label Encoding helps machine learning models interpret categorical data more efficiently by

converting it into a numerical format.

c. Feature Scaling

 To ensure uniformity and optimize model performance, Standard Scaling was applied to normalize the feature

values. Standard Scaling transforms the data such that it has a mean of zero and a standard deviation of one. This

is particularly beneficial for models like XG-Boost and Random Forest, where variations in feature scales may

otherwise impact performance.

d. Feature Selection using Variance Thresholding

 Variance Thresholding was employed to remove low-variance features that provide little to no useful

information. Features with near-constant values were eliminated as they contribute minimal predictive power.

By applying a threshold of 0.01, only the most relevant features with sufficient variance were retained for model

training.

 The Datasets is then split into training and testing sets using an 80-20 split. These preprocessing steps

collectively enhance model accuracy, reduce computational complexity, and improve the generalizability of the

models. The cleaned and processed dataset was then used for training and testing , evaluating machine learning

models, including XG-Boost, Random Forest, and an ensemble of both.

4
Vitthal B. Kamble et al. 1(2), 1-16, 2025

C. Handling Unbalanced Data

 In imbalanced datasets like CIC-IDS2017, where malicious network traffic is significantly underrepresented

compared to legitimate traffic, traditional machine learning models often struggle to correctly identify minority

class instances. This leads to biased predictions, poor recall for minority classes, and a lower overall detection

accuracy. SMOTE is an effective solution to address this issue by generating synthetic samples for the minority

classes rather than duplicating them. It creates new data points by interpolating between existing minority class

instances, making the dataset more balanced. This synthetic generation helps the model learn more effectively

from the minority class patterns, improving its generalization and reducing the risk of over fitting.

a. Why SMOTE?
 Improves Model Performance: Enhances the classifier’s ability to detect minority class instances,

leading to better recall and F1-score.

 Reduces Class Imbalance: Generates realistic synthetic data that balances the dataset without

introducing redundancy.

 Minimizes Overfitting: Unlike random oversampling, SMOTE prevents the model from memorizing

repeated data points by creating diverse synthetic samples.

 Efficient for Large Datasets: SMOTE is computationally efficient and scalable for large datasets like

CIC- IDS2017.

 Sampling Strategy and Parameter Tuning:The effectiveness of SMOTE depends on the choice of

parameters and the sampling strategy.

In this study, the following strategies were used:

1. Sampling Strategy

 Sampling_strategy='auto': SMOTE was applied to balance the classes by increasing the number of

minority samples to match the majority class.

 For datasets with multiple classes, a customized strategy could be applied to balance only the severely

underrepresented classes.

2. K-Nearest Neighbors (K_neighbors)

 K_neighbors=5: SMOTE uses a k-nearest neighbors approach to generate synthetic samples by selecting

five nearest neighbors of a given minority class instance.

 This parameter was tuned by evaluating model performance across different k values. Lower k values

reduce the risk of introducing noise, while higher values ensure smoother interpolation.

3. Random State

 Random_state=42: A fixed random state ensured reproducibility of the results across multiple runs.

4. Edge Cases Management

 In cases where the number of minority samples was extremely low (less than 5 samples), the

k_neighborsparameter was dynamically adjusted using:

 k_neighbors = min(5, minority_class_count - 1) if minority_class_count > 1 else

D. Model Implementation

a. XG-Boost Classifier

XG-Boost (Extreme Gradient Boosting) is a highly efficient and scalable machine learning algorithm based on the

gradient boosting framework[19]. It is designed to improve prediction accuracy by combining the outputs of

multiple weak learners,typically decision trees. XG-Boost is particularly effective for handling structured tabular

data and is widely used in classification tasks, including those involving imbalanced data.

 Gradient Boosting: XG-Boost minimizes the loss function using a gradient descent approach,

sequentially building decision trees to correct the errors of the previous models.

 Handling Imbalanced Data: By incorporating objective functions like logistic loss and using weighted

loss functions, XG-Boost can assign higher importance to minority classes, improving recall and

precision for rare events.

 Regularization: XG-Boost uses L1 and L2 regularization to reduce over fitting, making it robust for

noisy network traffic data.

5
Vitthal B. Kamble et al. 1(2), 1-16, 2025

 Feature Importance: XG-Boost provides insights into feature importance, allowing for a better

understanding of influential network attributes in anomaly detection

Equation

Accuracy=TP+TN/TP+TN+FP+FN (1)

Where:

 TP = True Positives (Correctly predicted positive instances)

 TN = True Negatives (Correctly predicted negative instances)

 FP = False Positives (Incorrectly predicted positive instances)

 FN = False Negatives (Incorrectly predicted negative instances)

Precision: Precision=TP/TP+ FP (2)

Recall=TP/TP+ FN (3)

F1Score:F1Score=2(Precision∗ Recall)/Precision+ Recall (4)

Recall (also known as Sensitivity or True Positive Rate)

Figure 1. Flow of Work Chart

TRAIN DATA SET

PYTHON ANACONDA

CONFUSION

MATRIX

TEST

XG BOOST

ANOMALY NORMAL

PLOT RESULT

START

END

6
Vitthal B. Kamble et al. 1(2), 1-16, 2025

b. Random Forest Classifier

 Random Forest is a powerful ensemble learning algorithm that constructs multiple decision trees using

randomly selected subsets of the training data. Its predictions are made by averaging the outputs of individual

trees for regression tasks or by majority voting for classification tasks.

 Robust Predictions: Random Forest is resilient to noise and over fitting due to its bagging technique,

making it ideal for large and complex datasets.

 Feature Importance Analysis: t provides feature importance scores using techniques like Gini

Importance or Mean Decrease in Impurity, enabling effective feature selection.

 Handling Imbalanced Data: By adjusting class weights and using bootstrap sampling, Random Forest

can manage class imbalance effectively. It also offers stable performance in scenarios where class

distributions are uneven.

Equation
 Accuracy=TP+TN/TP+TN+FP+FN (5)

Where:

 TP = True Positives(Correctly predicted positive instances)

 TN = True Negatives(Correctly predicted negative instances)

 FP = False Positives(Incorrectly predicted positive instances)

 FN = False Negatives(Incorrectly predicted negative instances)

 Precision: Precision=TP/TP+ FP (6)

 Recall= TP / TP+ FN (7)

 F1Score: F1Score=2(Precision∗ Recall)/Precision+ Recall (8)

 Balanced Accuracy: Balanced Accuracy = Sensitivity + Specificity/2 (9)

Recall (also known as Sensitivity or True Positive Rate)

Figure 2. Virtual Implementation of Random Forest

Data

Preprocessing Data Testing

Data

Training

Data

 Output

Class

Random Forest

Trained Classifier

Intrusion Data

Acquisition

Random Forest Classifier

7
Vitthal B. Kamble et al. 1(2), 1-16, 2025

c. Ensemble Model with Stacked Generalization

 Instead of using Logistic Regression as a meta-classifier, stacked generalization is employed to combine the

strengths of the XG-Boost and Random Forest classifiers. In this approach, the predictions from the base

classifiers are treated as inputs to a secondary model, often called the meta-learner. The meta-learner is trained

to learn the best way to combine these predictions to make the final decision.

Figure 3. Creation of Ensemble Model

 Improved Accuracy: Stacked generalization reduces the risk of over fitting by leveraging the strengths

of diverse models.

 Robustness: By capturing complementary information from the base models, it enhances prediction

accuracy, especially for complex network traffic data.

 Adaptive Learning: The meta-learner adapts to the misclassifications of the base models, improving

overall model reliability.

 Implementation Flexibility: Various machine learning algorithms, including gradient boosting models,

support vector machines, or deep neural networks, can be used as meta- learners depending on the

dataset and use case.

Equation
 Accuracy = TP+TN/TP+TN+FP+FN (10)

Where:

 TP = True Positives(Correctly predicted positive instances)

 TN = True Negatives(Correctly predicted negative instances)

 FP = False Positives(Incorrectly predicted positive instances)

 FN = False Negatives(Incorrectly predicted negative instances)

 Precision: Precision = TP/TP+ FP (11)

 Recall = TP /TP+ FN (12)

F1Score: F1Score = 2(Precision∗ Recall)/Precision+ Recall (13)

Balanced Accuracy: Balanced Accuracy = Sensitivity + Specificity/2 (14)

Recall(also known as Sensitivity or True Positive Rate)

IV. EXISTINGIMPLEMENTATIONMETHODS

A. XG-BOOST

Implementation Code

#XG-Boost Algorithm

import pandas as pd import numpy as np

from sklearn.model_selection import train_test_split from xgboost import XGBClassiCier

from sklearn.metrics import accuracy_score, classiCication_report, confusion_matrix from sklearn.preprocessing

import LabelEncoder, StandardScaler

from sklearn.feature_selection import VarianceThreshold from imblearn.over_sampling import SMOTE

Load the dataset try:

df = pd.read_csv('netwok_trafCic.csv') except FileNotFoundError:

raise FileNotFoundError("File 'network_trafCic.csv' not found. Please check the path.")

Data Set

 Data

Preprocessing

 Feature Selection

 Model Training

 Model Testing

Ensemble Model

 Classification

Model

8
Vitthal B. Kamble et al. 1(2), 1-16, 2025

Data Cleaning: Handle missing values df.columns = df.columns.str.strip() df.dropna(inplace=True)

Encode categorical variables using LabelEncoder label_encoder = LabelEncoder()

for col in df.select_dtypes(include='object').columns:

df[col] = label_encoder.Cit_transform(df[col])

Identify the target variable target_column = 'Label'

if target_column not in df.columns:

raise KeyError("Label column not found. Available columns: " + str(df.columns))

Separate features and target

X = df.drop(columns=[target_column]) y = df[target_column]

Handle inCinite values

X.replace([np.inf, -np.inf], np.nan, inplace=True) X.Cillna(X.max().max(), inplace=True)

Remove low variance features

selector = VarianceThreshold(threshold=0.01) X = pd.DataFrame(selector.Cit_transform(X))

Normalize features using StandardScaler scaler = StandardScaler()

X = pd.DataFrame(scaler.Cit_transform(X))

Handle imbalanced data using SMOTE smote = SMOTE(random_state=42)

X_resampled, y_resampled = smote.Cit_resample(X, y)

Split into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=0.2, random_state=42)

Initialize and train XGBoost ClassiCier

xgb = XGBClassiCier(n_estimators=200, learning_rate=0.05, max_depth=7, random_state=42) xgb.Cit(X_train,

y_train)

Make predictions

y_pred = xgb.predict(X_test)

Evaluate the model

print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")

print("\nClassiCication Report:\n", classiCication_report(y_test, y_pred, zero_division=1)) print("\nConfusion

Matrix:\n", confusion_matrix(y_test, y_pred))

Output

Figure 4. XGBoost Model Performance on Balanced Data (SMOTE Applied)

9
Vitthal B. Kamble et al. 1(2), 1-16, 2025

B. Random Forest

Implementation Code

#Random Forest Algorithm

import pandas as pd import numpy as np

from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassiCier

from sklearn.metrics import classiCication_report, confusion_matrix, accuracy_score from

imblearn.over_sampling import SMOTE

from collections import Counter

from sklearn.preprocessing import LabelEncoder, StandardScaler

Load dataset

df = pd.read_csv("netwok_trafCic.csv") # Ensure the CSV Cile is in the same directory

Trim spaces from column names to avoid key errors df.columns = df.columns.str.strip()

Drop missing values df.dropna(inplace=True)

Identify the target column

target_column = "Label" if "Label" in df.columns else " Label"

Convert categorical columns to numeric using Label Encoding label_encoders = {} for col in

df.select_dtypes(include=['object']).columns: if col

!= target_column:

le = LabelEncoder()

df[col] = le.Cit_transform(df[col]) label_encoders[col]

= le

Split features and target variable

X = df.drop(columns=[target_column]) y

= df[target_column]

Encode the target variable

y = LabelEncoder().Cit_transform(y)

Print class distribution before balancing print("Class Distribution Before SMOTE:", Counter(y))

Split dataset into training and testing sets (80-20 split)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)

Convert to NumPy array for faster processing X_train = X_train.to_numpy()

X_test = X_test.to_numpy()

Handle inCinite values & NaN

X_train = np.where(np.isinf(X_train), np.nan, X_train) X_test = np.where(np.isinf(X_test), np.nan, X_test)

Replace NaN with max Cinite value

Cinite_max = np.nanmax(X_train[np.isCinite(X_train)]) # Get max Cinite value

X_train = np.nan_to_num(X_train, nan=Cinite_max) X_test = np.nan_to_num(X_test, nan=Cinite_max)

Normalize features scaler

= StandardScaler()

X_train = scaler.Cit_transform(X_train) X_test = scaler.transform(X_test)

Apply SMOTE to only small classes (avoiding memory overload) min_class_size = 100000

class_counts = Counter(y_train)

10
Vitthal B. Kamble et al. 1(2), 1-16, 2025

smote_dict = {cls: min_class_size for cls, count in class_counts.items() if count < min_class_size} smote =

SMOTE(sampling_strategy=smote_dict, random_state=42)

X_train_resampled, y_train_resampled = smote.Cit_resample(X_train, y_train) print("Class Distribution After

SMOTE:", Counter(y_train_resampled))

Train Random Forest ClassiCier

rf_model = RandomForestClassiCier(n_estimators=100, random_state=42, class_weight="balanced", n_jobs=-1)

rf_model.Cit(X_train_resampled, y_train_resampled)

Predict on test data

y_pred = rf_model.predict(X_test)

Evaluate model performance

print("Accuracy Score:", accuracy_score(y_test, y_pred)) print("\nConfusion Matrix:\n", confusion_matrix(y_test,

y_pred)) print("\nClassiCication Report:\n", classiCication_report(y_test, y_pred))

Output

Figure 5. Random Forest Model Performance on Large-Scale Data (SMOTE Applied)

V. IMPLEMENTATION OF HYBRID TECHNIQUE
 Combining XG-Boost and Random Forest is a powerful strategy for leveraging the strengths of both models.

This hybrid approach can lead to improved performance, as it combines the robustness of Random Forest's

bagging with the accuracy-enhancing properties of XG-Boost boosting.

A. Combination of XG-Boost and Random Forest

There are several ways to combine XG-Boost and RandomForest to enhance their performance:

a. Stacking (Model Stacking)

 Stacking is an ensemble technique where multiple models are trained, and a meta-model is used to combine

their predictions. The idea is to stack XG-Boost and RandomForest as base models and use another model (often

a simpler model like logistic regression or another tree-based method) to combine the predictions of the base

models.

i). Process

 Train RandomForest and XG-Boost independently on the training data.

 Make predictions from each base model.

 Feed the predictions of both models as input into a meta-model, which could be a simple linear

regression or logistic regression.

11
Vitthal B. Kamble et al. 1(2), 1-16, 2025

ii). Advantages

 Combines the strengths of both models: the randomness and generalization of Random Forest and the

fine-tuned accuracy of XG-Boost.

 Can significantly improve model performance if both models have complementary strengths.

iii). Example

 Use Random Forest to capture general patterns.

 Use XG-Boost to focus on correcting the errors made by Random Forest.

 A meta-model (e.g., logistic regression) can combine these predictions for a more accurate result.

B. Bagging + Boosting

 In this approach, you can combine the bagging mechanism of Random Forest with the boosting mechanism of

XG-Boost in a hybrid model.

i). Process

 Train Random Forest (bagging) on the training data.

 Use the predictions of Random Forest as features for XG-Boost (boosting).

 Alternatively, you can first run XG-Boost and then apply RandomForest for further refinement and

correction of the errors.

ii). Advantages

 Bagging (Random Forest) helps reduce variance, preventing overfitting.

 Boosting (XG-Boost) refines the model by correcting the residuals of the previous iteration.

 This combination can handle both high variance and high bias in a more balanced manner.

C. Benefits of Combining XG-Boost and Random Forest

 Better Generalization: By combining the power of bagging (Random Forest) and boosting (XG-Boost),

you improve the generalization capability of the model, reducing both variance and bias.

 Increased Accuracy: The hybrid approach leverages the strengths of each model to increase overall

prediction accuracy.

 Reduced Overfitting: Random Forest helps to reduce overfitting by averaging out multiple trees, while

XG-Boost improves the model by focusing on difficult cases.

 Improved Handling of Imbalanced Data: Both models can be tuned to handle imbalanced datasets,

but combining them can improve performance in classification tasks with class imbalance.

 Increased Robustness: The ensemble of these two models can be more robust to noise and outliers in

the data.

D. Datasets

 We Use CIC –IDS2017 dataset for detecting unbalanced network . We Train and Test Datasets into 80 -20 .We

Clean The data So That Removes the blank and invalid data. That Improves the accuracy.

Output

Figure 6. Accuracy of Ensemble Model And Classification

12
Vitthal B. Kamble et al. 1(2), 1-16, 2025

Figure 7. Class Distribution Before And After Smote

Figure 8. Confusion Matrix Of Ensemble Model

Table 1. Comparison of Individual Methods and Hybrid Method(XG-Boost + Random Forest)

Parameter XG-Boost Random Forest
Enhancement of Both

(Hybrid)

Model Complexity

High: XG-Boost builds

sequential trees, focusing

on errors and fine-tuning

them, leading to higher

model complexity

Moderate: Random

Forest builds multiple

independent trees, which

are simple but can grow

complex with many trees

Very High: Combines the

complexity of both

models (Random Forest's

bagging and XG-Boost's

boosting), making it

complex and harder to

interpret

Interpretability

Low: Difficult to interpret

due to the sequential

nature of boosting, and

interactions between

High: Each tree in the

forest is easy to interpret,

and overall predictions

can be understood by

Very Low: Combining

both models results in a

highly complex structure,

making it very hard to

13
Vitthal B. Kamble et al. 1(2), 1-16, 2025

trees are harder to trace looking at individual trees interpret

Handling Nonlinear
Data

Excellent: XG-Boost

excels at capturing

complex nonlinear

relationships due to its

boosting process and

ability to model

interactions between

features

Moderate: Random

Forest is better at

capturing nonlinear

relationships compared to

a single decision tree but

is less effective than XG-

Boost

Excellent: The

combination of bagging

(Random Forest) and

boosting (XG-Boost)

provides very strong

performance in handling

nonlinear relationships

and interactions

Scalability

Excellent: Highly

optimized for scalability,

particularly with large

datasets, due to its

parallel processing

capabilities and efficient

handling of large amounts

of data

Good: Scales well for

moderately large

datasets, but can become

slower with too many

trees

Excellent: Highly

optimized for scalability,

particularly with large

datasets, due to its

parallel processing

capabilities and efficient

handling of large amounts

of data

Overfitting Resistance

Moderate: XG-Boost is

more prone to overfitting,

especially without proper

regularization, but it has

built-in regularization

(L1/L2) to help

Good: Random Forest is

less prone to overfitting

than a single decision tree

because it averages

predictions across many

trees, reducing variance

Very Good: Combines the

low-variance (Random

Forest) and high-bias (XG-

Boost) aspects, reducing

the likelihood of

overfitting and improving

generalization

Training Speed

Moderate to Slow:

Training speed can be

slower due to the

sequential nature of

boosting, although

optimizations like early

stopping and

parallelization can speed

up training

Moderate: Training

speed is generally slower

as the number of trees

increases, but

parallelization helps

Slow: Training speed is

generally slower due to

the combination of both

models (one for

generalization and the

other for error

correction)

Performance on
Imbalanced Data

Excellent: XG-Boost

performs well with

imbalanced datasets as it

focuses on harder-to-

classify examples, and

class weights can be

adjusted easily

Good: Random Forest can

handle imbalanced data

reasonably well by

averaging predictions, but

may require class weight

adjustment or resampling

techniques

Excellent: The hybrid

approach handles

imbalanced data well by

leveraging both the

robustness of Random

Forest and the error-

correction power of XG-

Boost

Feature Interaction

Excellent: XG-Boost is

specifically designed to

capture complex feature

interactions and

nonlinear relationships

Moderate: Random

Forest captures feature

interactions through

decision splits but is less

explicit than XG-Boost

Excellent: The hybrid

approach benefits from

both models' ability to

capture feature

interactions-Random

Forest handles the

general trends, while XG-

Boost refines the model

through boosting

Dimensionality Excellent: XG-Boost Good: Can handle high- Excellent: The hybrid

14
Vitthal B. Kamble et al. 1(2), 1-16, 2025

Handling handles high-dimensional

data well by regularizing

the model and selecting

the most relevant features

through boosting

dimensional data, but

may require feature

selection techniques to

avoid overfitting or

inefficiency

model benefits from both

approaches: Random

Forest helps manage

feature selection, while

XGBoost focuses on the

most relevant features

Robustness to Noise

Moderate: XGBoost can

be sensitive to noise

unless properly

regularized, as it may

overfit to noisy instances

Good: Random Forest is

relatively robust to noisy

data, as averaging

predictions reduces the

effect of noise

Excellent: The

combination of both

models provides a strong

defense against noise, as

Random Forest

generalizes well and

XGBoost refines the

model

Practical Use

Excellent: Often the go-to

choice for Kaggle

competitions and more

complex, high-accuracy

tasks due to its flexibility

and power.

Good: Works well for a

variety of general-

purpose tasks,

particularly with

structured/tabular data.

Excellent: Best used in

high-stakes applications

where both the

generalization and fine-

tuning abilities of the

models are needed,

especially in complex

real-world problems.

VI. CONCLUSION

 In this research, we proposed a robust ensemble model combining XG-Boost and Random Forest classifiers to

detect unbalanced network traffic. By addressing the challenges of class imbalance using SMOTE, we generated

synthetic samples to balance the dataset, resulting in more effective classification. The use of feature selection

through Variance Thresholding and data normalization via Standard Scaling further enhanced model

performance. The ensemble model demonstrated its strength by leveraging the advantages of both XG-Boost’s

gradient boosting approach and Random Forest’s robustness to noise. Through stacked generalization, we

achieved improved predictive accuracy compared to using individual classifiers. The visual analysis of the ROC

curve and confusion matrix provided further insights into the model’s performance, particularly in detecting

minority classes. While the model showed significant improvements, minor challenges such as false positives in

certain categories suggest areas for further enhancement. Future work may explore the inclusion of additional

classifiers, Cine-tuning hyper parameters, or integrating real-time anomaly detection mechanisms. Overall, the

proposed ensemble learning framework proves to be an effective and scalable solution for unbalanced network

traffic detection, contributing to the ongoing efforts in enhancing cyber-security and mitigating network threats.

VII. REFERENCES
[1] R.R. Kumar et al., “OPTCLOUD: An Optimal Cloud Service Selection Framework Using QoS Correlation Lens,”

Computational Intelligence and Neuroscience, vol. 2022, pp. 1–16, 2022. Google Scholar | Publisher Link

[2] R.R. Kumar, M. Shameem, and C. Kumar, “A Computational Framework for Ranking Prediction of Cloud Services Under

Fuzzy Environment,” Enterprise Information Systems, vol. 16, no. 1, pp. 167–187, 2022. Google Scholar | Publisher Link

[3] M. Bakro et al., “Performance Analysis Of Cloud Computing Encryption Algorithms,” Advances In Intelligent Computing

And Communication, vol. 202, pp. 357–367, 2021. Google Scholar | Publisher Link

[4] Cyber Security Market Share, Forecast, Growth Analysis, 2023.

[5] M. A. Akbar et al., “Prioritization-Based Taxonomy of Cloud-Based Outsource Software Development Challenges: Fuzzy

AHP Analysis,” Applied Soft Computing, vol. 95, 2020. Google Scholar | Publisher Link

[6] S. Lipsa, and R. K. Dash, “A Novel Dimensionality Reduction Strategy Based on Linear Regression with a Fine-Pruned

Decision Tree Classifier For Detecting DDoS Attacks in Cloud Computing Environments,” Proceedings of the 1st

International Symposium on Artificial Intelligence, pp. 15–25, 2022. Google Scholar | Publisher Link

https://scholar.google.com/scholar?q=OPTCLOUD:+An+optimal+cloud+service+selection+framework+using+QoS+correlation+lens
https://onlinelibrary.wiley.com/doi/full/10.1155/2022/2019485
https://scholar.google.com/scholar?q=A+computational+framework+for+ranking+prediction+of+cloud+services+under+fuzzy+environment
https://www.tandfonline.com/doi/abs/10.1080/17517575.2021.1889037
https://scholar.google.com/scholar?q=Performance+analysis+of+cloud+computing+encryption+algorithms
https://link.springer.com/chapter/10.1007/978-981-16-0695-3_35
https://scholar.google.com/scholar?q=Prioritization-based-taxonomy-of-cloud-based-outsource-software-development-challenges:+Fuzzy+AHP+analysis
https://www.sciencedirect.com/science/article/pii/S1568494620304968
https://scholar.google.com/scholar?q=A-novel-dimensionality-reduction-strategy-based-on-linear-regression-with-a-fine-pruned-decision-tree-classifier-for-detecting-DDoS-attacks-in-cloud-computing-environments
https://link.springer.com/chapter/10.1007/978-3-031-22485-0_2

15
Vitthal B. Kamble et al. 1(2), 1-16, 2025

[7] N. Moustafa, and A. Jolfaei, “Autonomous Detection Of Malicious Events Using Machine Learning Models in Drone

Networks,” in Proceedings of the 2nd ACM MobiCom Workshop on Drone-Assisted Wireless Communications for 5G and

Beyond, pp. 61–66, 2020. Google Scholar | Publisher Link

[8] R. Shrestha et al., “Machine Learning-Enabled Intrusion Detection System for Cellular-Connected UAV Networks,”

Electronics, vol. 10, no. 13, p. 1549, Jun. 2021. Google Scholar | Publisher Link

[9] O. Bouhamed et al., “Lightweight IDS for UAV Networks: A Periodic Deep Reinforcement Learning-Based Approach,”

Proceedings of the IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 1032–1037, 2021.

Google Scholar | Publisher Link

[10] J. Whelan, A. Almehmadi, and K. El-Khatib, “Artificial Intelligence for Intrusion Detection Systems in Unmanned Aerial

Vehicles,” Computers and Electrical Engineering, vol. 99, 2022. Google Scholar | Publisher Link

[11] Q. Abu Al-Haija, and A. Al Badawi, “High-Performance Intrusion Detection System for Networked UAVs Via Deep

Learning,” Neural Computing and Applications, vol. 34, no. 13, pp. 10885–10900, 2022. Google Scholar | Publisher Link

[12] E. Basan, A. Basan, A. Nekrasov, C. Fidge, E. Abramov, and A. Basyuk, “A Data Normalization Technique For Detecting

Cyber Attacks On UAVs,” Drones, vol. 6, no. 9, p. 245, Sep. 2022. Google Scholar | Publisher Link

[13] P. J. Sajith and G. Nagarajan, “Intrusion Detection System Using Deep Belief Network & Particle Swarm Optimization,”

Wireless Personal Communications, vol. 125, no. 2, pp. 1385–1403, Jul. 2022. Google Scholar | Publisher Link

[14] G. Sreelatha, A.V. Babu, and D. Midhunchakkaravarthy, “Improved Security In Cloud Using Sandpiper and Extended

Equilibrium Deep Transfer Learning-Based Intrusion Detection,” Cluster Computing, vol. 25, no. 5, pp. 3129–3144, Oct.

2022. Google Scholar | Publisher Link

[15] Q. Liu et al., “A Multi-Task Based Deep Learning Approach for Intrusion Detection,” Knowledge-Based Systems, vol. 238,

2022. Google Scholar | Publisher Link

[16] M.A. Talukder et al., “A Dependable Hybrid Machine Learning Model for Network Intrusion Detection,” Journal of

Information Security and Applications, vol. 72, 2023. Google Scholar | Publisher Link

[17] V.B. Kamble, and N. J. Uke, Ethical Hacking, San International, 2024. Publisher Link

[18] V.B. Kamble et al., “Machine Learning In Fake News Detection And Social Innovation: Navigating Truth in the Digital

Age,” Exploring Psychology, Social Innovation and Advanced Applications of Machine Learning, pp. 87–108, 2025.

Google Scholar | Publisher Link

[19] O. Dabade et al., “Developing An Intelligent Credit Card Fraud Detection System With Machine Learning,” Journal of

Artificial Intelligence, Machine Learning and Neural Network (JAIMLNN), vol. 2022, ISSN 2799-1172. Google Scholar |

Publisher Link

[20] V. B. Kamble et al., “Wireless Networks And Cross-Layer Design: An Implementation Approach,” International Journal

of Computer Science and Information Technology (IJCSIT), vol. 5, no. 4, pp. 5435–5440, 2014. Google Scholar | Publisher

Link

[21] V. B. Kamble, and N. J. Uke, “Image Tampering Detection: A Review of Multi-Technique Approach from Traditional to

Deep Learning.” Journal of Dynamics and Control, vol. 8, no. 11, pp. 252-283, 2024. Publisher Link

[22] A. Alshammari et al., “Classification Approach For Intrusion Detection In Vehicle Systems,” Wireless Engineering and

Technology, vol. 9, no. 4, pp. 79–94, 2018. Google Scholar | Publisher Link

[23] J. Li et al., “Machine Learning Algorithms for Network Intrusion Detection,” AI in Cybersecurity, pp. 151–179, 2019.

Google Scholar | Publisher Link

[24] K. Park, Y. Song, and Y. G. Cheong, “Classification of Attack Types for Intrusion Detection Systems Using a Machine

Learning Algorithm,” Proceedings of the 2018 IEEE Fourth International Conference on Big Data Computing Service and

Applications (BigDataService), pp. 1-3, 2018. Google Scholar | Publisher Link

[25] S. Bernard, L. Heutte, and S. Adam, “On the Selection of Decision Trees in Random Forests,” Proceedings of the

International Joint Conference on Neural Networks, Atlanta, Georgia, USA, pp. 14–19, 2009. Google Scholar | Publisher

Link

[26] A. Tesfahun, and D. L. Bhaskari, “Intrusion Detection Using Random Forests Classifier with SMOTE and Feature

Reduction,” Proceedings of the 2013 International Conference on Cloud & Ubiquitous Computing & Emerging

Technologies. Google Scholar | Publisher Link

[27] R. Patgiri et al., “An Investigation on Intrusion Detection System Using Machine Learning.” Google Scholar | Publisher

Link

[28] T. S. Yange, O. Onyekware, and Y. M. Abdulmuminu, “A Data Analytics System for Network Intrusion Detection Using

Decision Tree,” Journal of Computer Science and Applications, vol. 8, pp. 21–29, 2020. Google Scholar | Publisher Link

[29] E. Hassan, M. Saleh, and A. Ahmed, “Network Intrusion Detection Approach Using Machine Learning Based on Decision

Tree Algorithm,” Journal of Engineering and Applied Science, vol. 7, pp. 1-10, 2020. Google Scholar | Publisher Link

[30] B. S. Bhati, and C. S. Rai, “Analysis of Support Vector Machine-Based Intrusion Detection Techniques,” Arabian Journal

for Science and Engineering, vol. 45, pp. 2371–2383, 2020. Google Scholar | Publisher Link

https://scholar.google.com/scholar?q=Autonomous+detection+of+malicious+events+using+machine-learning-models-in-drone-networks
https://dl.acm.org/doi/abs/10.1145/3414045.3415951
https://scholar.google.com/scholar?q=Machine-Learning-Enabled-intrusion-detection-system-for-cellular-connected-UAV-networks
https://www.mdpi.com/2079-9292/10/13/1549
https://scholar.google.com/scholar?q=Lightweight+IDS+for+UAV+networks:+A+periodic+deep+reinforcement+learning-based+approach
https://ieeexplore.ieee.org/abstract/document/9463947/
https://scholar.google.com/scholar?q=Artificial+intelligence+for+intrusion+detection+systems+in+unmanned+aerial+vehicles
https://www.sciencedirect.com/science/article/pii/S0045790622000842
https://scholar.google.com/scholar?q=High-performance+intrusion+detection+system+for+networked+UAVs+via+deep+learning
https://link.springer.com/article/10.1007/s00521-022-07015-9
https://scholar.google.com/scholar?q=A+data+normalization+technique+for+detecting+cyber+attacks+on+UAVs
https://www.mdpi.com/2504-446X/6/9/245
https://scholar.google.com/scholar?q=Intrusion+detection+system+using+deep+belief+network++particle++swarm++optimization
https://link.springer.com/article/10.1007/s11277-022-09609-x
https://scholar.google.com/scholar?q=Improved%20security%20in%20cloud%20using%20sandpiper%20and%20extended%20equilibrium%20deep%20transfer%20learning-based%20intrusion%20detection
https://link.springer.com/article/10.1007/s10586-021-03516-9
https://scholar.google.com/scholar?q=A-multi-task-based-deep-learning-approach-for-intrusion-detection
https://www.sciencedirect.com/science/article/pii/S0950705121010340
https://scholar.google.com/scholar?q=A-dependable-hybrid-machine-learning-model-for-network-intrusion-detection
https://www.sciencedirect.com/science/article/pii/S2214212622002496
https://sanpublications.nobelonline.in/product/ethical-hacking-2/
https://scholar.google.com/scholar?q=Machine-Learning-in-Fake-News-Detection-and-Social-Innovation:-Navigating-Truth-in-the-Digital-Age
https://www.igi-global.com/chapter/machine-learning-in-fake-news-detection-and-social-innovation/371660
https://scholar.google.com/scholar?q=Developing+an+Intelligent+Credit+Card+Fraud+Detection+System+with+Machine+Learning
https://journal.hmjournals.com/index.php/JAIMLNN/article/view/2338
https://scholar.google.com/scholar?q=Wireless+Networks+And+Cross-Layer+Design:+An+Implementation+Approach
https://journal.hmjournals.com/index.php/JAIMLNN/article/view/2338
https://journal.hmjournals.com/index.php/JAIMLNN/article/view/2338
https://jodac.org/image-tampering-detection-a-review-of-multi-technique-approach-from-traditional-to-deep-learning/
https://scholar.google.com/scholar?q=Classification+approach+for+intrusion+detection+in+vehicle+systems
https://www.scirp.org/journal/paperinformation?paperid=88247
https://scholar.google.com/scholar?q=Machine+learning+algorithms+for+network+intrusion+detection
https://link.springer.com/chapter/10.1007/978-3-319-98842-9_6
https://scholar.google.com/scholar?q=Classification+of+Attack+Types+for+Intrusion+Detection+Systems
https://ieeexplore.ieee.org/abstract/document/8405725/
https://scholar.google.com/scholar?q=On-the-Selection-of-Decision-Trees-in-Random-Forests
https://ieeexplore.ieee.org/abstract/document/5178693/
https://ieeexplore.ieee.org/abstract/document/5178693/
https://scholar.google.com/scholar?q=Intrusion+Detection+Using+Random+Forests+Classifier+With+SMOTE+And+Feature+Reduction
https://ieeexplore.ieee.org/abstract/document/6701490
https://scholar.google.com/scholar?q=An+Investigation+On+Intrusion+Detection+System+Using+Machine+Learning
https://ieeexplore.ieee.org/abstract/document/8628676
https://ieeexplore.ieee.org/abstract/document/8628676
https://scholar.google.com/scholar?q=A+Data+Analytics+System+For+Network+Intrusion+Detection+Using+Decision+Tree
https://pubs.sciepub.com/jcsa/8/1/4/
https://scholar.google.com/scholar?q=Network+Intrusion+Detection+Approach+Using+Machine+Learning+Based+On+Decision+Tree+Algorithm
https://m.mu.edu.sa/sites/default/files/2021-01/JEAS%20V7%20I2-1-10.pdf
https://scholar.google.com/scholar?q=Analysis+Of+Support+Vector+Machine-Based+Intrusion+Detection+Techniques&hl=en&as_sdt=0,5
https://link.springer.com/article/10.1007/s13369-019-03970-z

16
Vitthal B. Kamble et al. 1(2), 1-16, 2025

[31] Q. Shi et al., “A Framework of Intrusion Detection System Based On Bayesian Network in IoT,” International Journal of

Performability Engineering, vol. 14, pp. 2280–2288, 2018. Google Scholar | Publisher Link

[32] M.K. Prasath and B. Perumal, “A Meta-Heuristic Bayesian Network Classification for Intrusion Detection,” International

Journal of Network Management, vol. 29, 2019. Google Scholar | Publisher Link

[33] G. Xu, “Research on K-Nearest Neighbor High-Speed Matching Algorithm in Network Intrusion Detection,” Netinfo

Security, vol. 20, pp. 71–80, 2020.

[34] D. Chao, Z. Gang, Y. Liu, and D. L. Zhang, “The Detection of Network Intrusion Based on Improved AdaBoost

Algorithm,” Journal of Sichuan University (Natural Science Edition), vol. 52, pp. 1225–1229, 2015. Google Scholar |

Publisher Link

[35] K. Zhang and G. Liao, “Network Intrusion Detection Method Based on Improving Bagging-SVM Integration Diversity,”

Journal of Northeast Normal University (Natural Science Edition), vol. 52, pp. 53–59, 2020. Google Scholar | Publisher

Link

[36] B. Li and Y. Zhang, “Research on Self-Adaptive Intrusion Detection Based on Semi-Supervised Ensemble Learning,”

Electrical Automation, vol. 43, pp. 101–104, 2021.

[37] F. Jiang et al., “Approximate Reducts-Based Ensemble Learning Algorithm and its Application in Intrusion Detection,”

Journal of Beijing University of Technology, vol. 42, pp. 877–885, 2016. Google Scholar | Publisher Link

[38] J. M. Xia et al., “Improved Random Forest Classifier Network Intrusion Detection Method,” Computer Engineering and

Design, vol. 40, pp. 2146–2150, 2019. Google Scholar

[39] L. Zhang, J. Zhang, and Y. Sang, “Intrusion Detection Algorithm Based on Random Forest and Artificial Immunity,”

Computer Engineering, vol. 46, pp. 146–152, 2020. Google Scholar

[40] J. Qiao et al., “Network Intrusion Detection Method Based on Random Forest,” Computer Engineering and Applications,

vol. 56, pp. 82–88, 2020. Google Scholar | Publisher Link

[41] V. B. Kamble et al., “Enhancing UPI Fraud Detection: A Machine Learning Approach Using Stacked Generalization,”

International Journal of Management Science and Machine Learning (IJMSM), vol. 2, no. 1, pp. 69–83, 2025. Google

Scholar | Publisher Link

https://scholar.google.com/scholar?q=A+Framework+Of+Intrusion+Detection+System+Based+On+Bayesian+Network+In+IoT
https://www.ijpe-online.com/EN/10.23940/ijpe.18.10.p4.22802288
https://scholar.google.com/scholar?q=A+Meta-Heuristic+Bayesian+Network+Classification+for+Intrusion+Detection
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2047
https://scholar.google.com/scholar?q=The+Detection+of+Network+Intrusion+Based+on+Improved+AdaBoost+Algorithm
https://dl.acm.org/doi/abs/10.1145/3377644.3377660
https://scholar.google.com/scholar?q=Network+Intrusion+Detection+Method+Based+on+Improving+Bagging-SVM+Integration+Diversity
https://www.mdpi.com/2073-8994/16/7/850
https://www.mdpi.com/2073-8994/16/7/850
https://scholar.google.com/scholar?q=Approximate+Reducts-Based+Ensemble+Learning+Algorithm+and+Its+Application+in+Intrusion+Detection
https://journal.bjut.edu.cn/bjgydxxb/en/article/doi/10.11936/bjutxb2015100008?viewType=HTML
https://scholar.google.com/scholar?q=Improved+Random+Forest+Classifier+Network+Intrusion+Detection+Method
https://scholar.google.com/scholar?q=Intrusion+Detection+Algorithm+Based+on+Random+Forest+and+Artificial+Immunity
https://scholar.google.com/scholar?q=Network+Intrusion+Detection+Method+Based+on+Random+Forest
https://link.springer.com/article/10.1007/s13369-019-03970-z
https://scholar.google.com/scholar?q=Enhancing+UPI+Fraud+Detection:+A+Machine+Learning+Approach+Using+Stacked+Generalization
https://scholar.google.com/scholar?q=Enhancing+UPI+Fraud+Detection:+A+Machine+Learning+Approach+Using+Stacked+Generalization
https://www.ijmsm.org/ijmsm-v2i1p108.html

